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We study the steady state behavior of the market for a storable good where firms have monopoly

power instantaneously, but compete against future sellers. Consumers have identical preferences,

but differ in their willingness to pay due to differential inventory holdings. In a steady state, the

optimal nonlinear tariffs chosen by the firms induce the constant distribution of private inventories.

Identical consumers behave differently, shop infrequently and consume in a cyclical manner. The

ability to store goods gives rise to inefficiency, but also allows consumers to retain some surplus.
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1 INTRODUCTION
Many goods are storable, which means that the consumer can buy a large quantity and

consume gradually from her inventory. Furthermore, the consumer’s inventory is unob-

servable by the seller, which puts significant restrictions on the seller’s ability to exercise

monopoly power. This point is made most clearly by Hendel, Lizzeri and Roketskiy (2014),

who study a monopolist who faces a population of homogeneous consumers, with identical

preferences. The monopolist can engage in unrestricted nonlinear pricing. They show

that the consumer’s ability to store and to purchase only occasionally puts significant

restrictions on monopoly power. This leads the monopolist, who is assumed to be able to

commit to the future path of prices, to set prohibitively high “normal” prices, interspersed

by periodic sales, which are the only periods in which the consumer buys. Nonetheless,

casual empiricism suggests that many storable goods such as soft drinks, bottled water or

toiletries are not characterized by a combination of prohibitive prices and periodic sales,

and aggregate demand is relatively stationary in these markets.
1

The present paper differs from Hendel et al. (2014) in several respects. First, we assume

that the firm’s monopoly power is transitory, as in a dynamic Diamond search model. That

is, the firm is effectively the exclusive seller to the consumer who visits it in the current

period, but it recognizes that the consumer has the option of postponing purchase to the

future, in which case she will buy from a different firm. Second, although consumers have

identical preferences (as in Hendel et al., 2014), they will have a distribution of demands

as a consequences of differential inventories, and the firm uses nonlinear prices as a way

of screening different inventory levels. Finally, the resulting equilibrium is stationary—in

each period, the distribution of consumer inventories is constant, leading each “transitory

monopolist” to offer a constant nonlinear tariff.

We show that menu pricing of storable goods is very different from the standard (static)

second-degree price discrimination. Our model predicts the following:

(i) Identical consumers become endogenously heterogeneous in the amount of good they

keep in their inventory.

1
It should be noted that even with full commitment, the monopolist’s optimization problem is complex due to

the storage, and the paper cannot characterize the fully optimal dynamic nonlinear price schedule.
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(ii) Sellers respond to consumer heterogeneity by offering a variety of pack sizes. A clear

divide arises between bundles designed for immediate consumption and bundles

designed for stockpiling.

(iii) Consumers shop and consume in a cyclical manner. They visit shops infrequently and

rely on their inventories for consumption. The frequency of shopping is determined

by how inefficient consumer storage is.

(iv) Despite nonlinear pricing, the consumers retain surplus which does not depend on

how difficult or costly it is to store the good.

(v) Rather than reflecting a persistent taste heterogeneity, equilibrium menus of pack

sizes are shaped by the intertemporal elasticity of demand.

(vi) Sellers make the good more scarce when better information about past prices is

available.

(vii) Sellers who have long-lasting monopoly power make the good more scarce than

sellers who serve the consumers only occasionally.

In the absence of storage, nonlinear pricing with homogeneous consumers is straight-

forward. It suffices for the seller to sell a single quantity in each period, the efficient one,

at a price which extracts all the consumer’s surplus. This is not possible when the good is

storable, since the consumer can obtain the good required for the current consumption

from two sources: she can buy it from the seller, or she could reduce her past consumption

and transfer the good to the current period using storage. The latter is equivalent to buying

the good at a linear (shadow) price that is proportional to the past marginal utility of

consumption. To be competitive, the seller is forced to lower the price and offer more than

one bundle on the menu. This occurs not once, but at each moment in time. In equilibrium,

it makes it cheaper for the consumer to source the good at all times, and therefore puts

even more pressure on the seller. This mechanism is at the heart of our results.

In this paper, we focus on stationary equilibria. We do so both for tractability and for

realism, since we believe that for many storable goods, prices are relatively stable. Of

course, there are other goods which are characterized by alternating periods of high and

low prices. This is indeed possible if monopoly power is persistent, the seller faces little

competition from other sellers even in the future, and has the ability to commit to future

prices , as in Hendel et al. (2014). In our setting, there could possibly be non-stationary

equilibria, but characterizing them seems intractable, since even the stationary equilibrium

is relatively complex.

In the next section we discuss the related literature. We set up the model in Section 3,

discuss key equilibrium conditions in Section 4 and characterize stationary equilibria in

Section 5. Section 6 studies the effects of information and market structure on equilibrium

pricing and Section 7 concludes.

2 RELATED LITERATURE
Nonlinear pricing of storable goods has been studied by Hendel et al. (2014). They consider

a setting in which the good is sold by a monopolist that is able to commits to future prices.

The monopolist expects the consumers to stockpile in periods of low prices and to avoid

shopping in periods of high prices. The monopolist can limit intertemporal arbitrage by
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setting a high per-unit price and running periodic sales during which consumers get a

chance to stockpile.

The main difference in our analysis is that we allow for competition between the current

period sellers and future sellers. This competition eliminates the seller’s incentive to reduce

consumer heterogeneity via differential inventories. Consequently, our model’s predictions

are different from Hendel et al. (2014). We show that stationary equilibrium is possible. In

this equilibrium, homogeneous consumers diverge in their choices of inventories. Instead

of using periodic sales, the sellers rely on the menu design to extract rent from consumers.

They introduce two distinct type of bundles meant for either immediate consumption or

stockpiling.

One common theme that arises in our analysis and in Hendel et al. (2014) is that consumer

surplus does not depend on the details of storage technology. They show that the storage

capacity
2
is irrelevant for the seller’s profit and consumer surplus because consumers can

adjust the frequency of shopping to offset the limitations of their storage.

The rest of the literature on storable goods focuses either on linear pricing or on models

with unit demand. The effect of sellers’ commitment to future prices is studied by Dudine,

Hendel and Lizzeri (2006). They show that both consumers and the monopolist benefit

from the latter’s ability to credibly set future prices. Berbeglia, Rayaprolu and Vetta (2019)

point out that this this result crucially depends on divisibility of the good. They study a

version of the model with a unit demand and identify cases in which a monopolist benefits

from contingent pricing.

The effects of consumer inventories are well-understood when the seller is limited to

using linear pricing. Anton and Das Varma (2005) show that competing sellers temporarily

lower prices in an attempt to capture future rivals’ market shares (also, see Guo and

Villas-Boas, 2007). Other studies of price dynamics for storable goods include Benabou

(1989), Deaton and Laroque (1996), Su (2007), Su (2010) and Antoniou and Fiocco (2024).

Antoniou and Fiocco (2019) consider the strategic use of inventories by the sellers and

Antoniou and Fiocco (2023) focus on variability of production costs. Nava and Schiraldi

(2014) show that consumer inventories can be used as a vehicle to sustain sellers’ collusion.

The evolution of the consumer inventories is driven by the past consumption and

shopping decisions, therefore, consumer histories are relevant for pricing and other related

issues such as the efficient allocation of resources. Cole and Kocherlakota (2001) study the

social planner’s problem of allocating a storable resource in the context of hidden savings.

Their work focuses on optimal insurance rather than surplus extraction. They show that

the optimal allocation is equivalent to a market outcome in which consumers can trade

risk-free bonds.

Bhaskar and Roketskiy (2021) investigate the importance of privacy for markets in the

history of past consumption is relevant for current pricing. Our model shares a set of

features with these two studies. Similar to savings, inventories are private, they affect the

consumers’ current valuation for the good and they are shaped by the past shopping and

consumption decisions.

2
One can view storage capacity as a manifestation of a particular type of storage cost for which the first 𝑆

units of good are stored for free and anything on top of 𝑆 is stored at a prohibitively high cost.
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Inventories affect the value consumers’ outside options and as a result may cause price

dispersion as was shown in Hong, McAfee and Nayyar (2002). Moreover, uneven change

in inventories may cause dynamic changes in aggregate demand. The interaction between

a dynamic demand and pricing has been studied in the context of durable good monopolist

(e.g., by Sobel (1991) and Garrett (2016)). Economic literature draws a clear distinction

between durable and storable goods. Durable goods are characterized by unit demand,

exogenous depreciation and passive consumption when the consumer decides only when

to purchase the good (or to replace it). Storable goods, on the other hand, are usually

assumed to be homogeneous and perfectly divisible. In addition to deciding when and how

much of the good to purchase, the consumers choose the rate of consumption. In practice,

these distinctions are less pronounced and there are goods which exhibit the traits of both

theoretical categories.

A key component of our analysis is optimality of nonlinear pricing in a dynamic setting.

This problem is related to the problem of optimal durable good pricing and Coase conjecture

(see Coase, 1972). A standard assumption in the literature on durable good pricing is that

the consumers leave the market after purchasing the good. This assumption delivers a

relatively simple characterization of the distribution of the willingness to pay for the

consumers remaining in the market—usually it is a truncation of the initial distribution

(see Doval and Skreta, 2019).

The property that sets storable goods apart from durable ones is frequent repeated

shopping: consumers return to themarket periodically to top up their inventories. Moreover,

their current demand is determined by their past consumption decisions. This makes

the problem of characterizing aggregate demand complicated. In addition to an adverse

selection aspect which is common for durable good pricing problems, our model has a

moral hazard component. Past studies of dynamic moral hazard and adverse selection

include among others Ma (1991), Strulovici (2011), Williams (2015), Halac, Kartik and Liu

(2016) and Bhaskar and Roketskiy (2023).

On the empirical front, Hendel and Nevo (2004) reviews early literature on markets

for storable goods. Hendel and Nevo (2006a,b) estimate elasticity of demand for storable

good (laundry detergents, soft drinks and yogurts) and point out that elasticity estimated

using a static demand is biased upward by a large factor.
3
Therefore, consumer stockpiling

behavior is an important consideration for pricing. Our model includes the supply side’s

response to consumers’ strategic stockpiling—an element that is not accounted for in

Hendel and Nevo’s analysis.

Hendel and Nevo (2013) use a model with linear pricing and seller’s commitment to

future prices to measure the effect of inventory-related intertemporal price discrimination

on profits and welfare. Even though our model focuses on stationary equilibria, it is clear

from our results that there is a scope for cyclical pricing patterns even when sellers cannot

credibly set prices for the future periods.

Estimating elasticity is one of many tasks for which the dynamic nature of demand

for storable goods has to be taken into account. Another one is aggregating prices into

3
Kano (2018) presents survey evidence of the use of inventories and its effect on consumer demand. Ching

and Osborne (2020) discusses identification of consumer stockpiling behavior.
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macroeconomic price indices. Osborne (2018) proposes a method of calculating cost-of-

living index that accounts for the use of inventories in intertemporal arbitrage.

3 THE MODEL
A unit measure of identical and anonymous consumers comprises the market for a perfectly

divisible and storable good. Each consumer is long-lived and has quasi-linear preferences

over the stream of consumption and expenditures {(𝑐𝑡 , 𝑝𝑡 )}𝑡=0,1,.... These preferences are
represented by a utility function

∞∑︁
𝑡=0

𝛿𝑡 [𝑢 (𝑐𝑡 ) − 𝑝𝑡 ],

where 𝑢 is an increasing, concave and infinitely differentiable function that represents the

flow value of consumption. 𝑝𝑡 is the total expenditure on the good in period 𝑡 (it is not the

unit price, since we allow nonlinear pricing). We assume that 𝑢 (0) = 0, lim

𝑐→0

𝑢′(𝑐) = ∞ and

𝑢′′′(𝑐) ≤ 0 for all 𝑐 .

A consumer can store the good at a cost that is measured in units of consumption good.
4

We denote the level of consumer 𝑖’s inventory at date 𝑡 by 𝑠𝑡 . In order to have this amount

of good in storage, the consumer must put ℎ(𝑠𝑡 ) units of the good into the storage at date

𝑡 − 1. We assume that ℎ is increasing, convex and infinitely differentiable. The function ℎ

represents the (gross) cost of storing the good, therefore ℎ′(0) ≥ 1.

Let 𝑥𝑡 be the amount of good purchased by consumer 𝑖 at time 𝑡 . Consumption and

storage choices are feasible if they satisfy the following resource constraint:

𝑥𝑡 + 𝑠𝑡 = 𝑐𝑡 + ℎ(𝑠𝑡+1) .

We model the supply side of the market as a serial monopoly. In each period 𝑡 , there is a

single short-lived seller also called 𝑡 , who can procure any quantity of the good at marginal

cost 𝑘 and sell it to the consumers.
5
Each seller can use nonlinear menu pricing, but

cannot offer long-term contracts, and therefore, must transact with consumers on the spot.

Formally, a menu is a lower semi-continuous function 𝑝𝑡 (𝑥) that assigns a nonnegative
price to each quantity 𝑥 . Any menu includes the option of not buying anything—i.e.,

𝑝𝑡 (0) = 0. Sellers set their quantity-price menus to maximize profit which equals to the

total revenue net of procurement costs.

Even though the consumers are identical in terms of their preferences and constraints,

they may consume and store differently from each other. Thus, in any period, consumption,

storage and expenditures are consumer specific, and should be indexed by 𝑖 , the consumer’s

identity. The aggregate profit of seller 𝑡 is a sum of profits from individual transactions

with each consumer 𝑖: ∫
1

0

(𝑝𝑡 (𝑥𝑖,𝑡 ) − 𝑘𝑥𝑖,𝑡 )𝑑𝑖.

4
Modelling this cost in monetary units would produce qualitatively similar results.

5
There need not literally be a single seller in each period. One could have a large number of identical sellers,

with the consumer having to pay a search cost to visit a second seller, as in Diamond (1971).
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3.1 Timing, information and equilibrium notion
A consumer’s past decisions—i.e., how much to purchase, store and consume—are private

and not observed by the seller at date 𝑡 . Nor does the seller 𝑡 observe the menus that were

offered to the consumers by the his predecessors.

In the beginning of period 𝑡 , consumer 𝑖 chooses whether to visit seller 𝑡 or not. If he

visits the seller, she observes the menu and decides what item to buy. If the consumer

chooses not to visit seller 𝑡 , she cannot buy anything in that period.
6

In Section 6 we use a simplified, two-period model to examine how our findings depend

on information and market structure: we consider scenarios in which menus are publicly

observable and a single long-lived seller replaces serial monopoly.

4 KEY EQUILIBRIUM CONDITIONS
First, we establish a general relationship between the consumption rule and the menus of-

fered by the sellers throughout time.We do it without imposing any additional assumptions—

such as stationarity—on equilibrium. We present two conditions: one characterizes optimal

consumer’s choice from the sellers’ menus, and the other characterizes optimal allocation

of the good across different periods.

The first condition takes a form of an integral inequality that in some special cases (but

not always) reduces to a more familiar condition—the monotonicity of the consumers

choice from the menu in her inventory level. This relationship is presented in Proposition 1.

The second condition is an Euler equation. It characterizes how consumers allocate the

good in their inventory across time. This condition appears in Proposition 2

After this we turn to the optimality of prices. We describe how consumers with nonempty

storage discipline sellers’ ability to extract surplus by restricting consumers’ choice in

equilibrium. Proposition 3 presents the formal argument.

Consider a consumer with inventory 𝑠 at time 𝑡 . Let 𝑉𝑡 (𝑠) be a value function for this

consumer prior to buying from the seller. Then,

𝑉𝑡 (𝑠) = max

𝑐,𝑠,𝑥
{𝑢 (𝑐) + 𝛿𝑉𝑡+1(𝑠) − 𝑝𝑡 (𝑥)} (1)

s.t. 𝑥 + 𝑠 = 𝑐 + ℎ(𝑠).

Similarly, let𝑊𝑡 (𝑟 ) be the consumer’s value after she has visited the seller. Variable 𝑟

represents the amount of the good at consumer’s disposal. Then,

𝑊𝑡 (𝑟 ) = max

𝑐,𝑠
{𝑢 (𝑐) + 𝛿𝑉𝑡+1(𝑠)} (2)

s.t. 𝑟 = 𝑐 + ℎ(𝑠) .

Note that the consumer’s optimization can be done in two steps: first choosing the best item

from the menu 𝑥𝑡 (𝑠) given the current inventory 𝑠 and then choosing the consumption

amount 𝑐𝑡 (𝑟 ) given the total resources 𝑟 (which include the purchased item). This follows

from that fact that consumers who have the same inventory obtained in different ways

6
This assumption, that the consumer cannot buy unless he visits the seller, simplifies the analysis. We discuss

this assumption in further detail in Section 5.2
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face the same allocation problem. Thus, we can replace (1) and (2) with

𝑉𝑡 (𝑠) = max

𝑥≥0
{𝑊𝑡 (𝑠 + 𝑥) − 𝑝𝑡 (𝑥)}

𝑊𝑡 (𝑟 ) = max

𝑠∈[0,ℎ−1 (𝑟 ) ]
{𝑢 (𝑟 − ℎ(𝑠)) + 𝛿𝑉𝑡+1(𝑠)}

In contrast with a static optimal menu pricing, the complication that arises in a dynamic

environment is that the optimality of the consumption rule cannot be formulated for a

single isolated period. Optimal consumption depends on the current and the anticipated
future prices. Consequently, the two value functions, 𝑉 and𝑊 , depend upon the sequence

of anticipated prices.

Proposition 1. Consider a solution 𝑐𝑡 (·) to a programme (2). Consumer’s choice of an
item from the menu 𝑥𝑡 (𝑠) (and corresponding consumption 𝑐𝑡 (𝑠) = 𝑐𝑡 (𝑥𝑡 (𝑠) + 𝑠)) is optimal
given some menu 𝑝𝑡 (𝑥) if and only if

(i) value functions are differentiable and satisfy the envelope condition; namely, for any
𝑟 ≥ 0:

𝑊 ′
𝑡 (𝑟 ) = 𝑢′(𝑐𝑡 (𝑟 )), (3)

and for any 𝑠 ≥ 0:

𝑉 ′
𝑡 (𝑠) = 𝑢′(𝑐𝑡 (𝑠)); (4)

(ii) consumer’s choice 𝑥𝑡 (𝑠) satisfies

∀𝑠, 𝑧 ≥ 0 :

𝑠∫
𝑧

𝑢′ (𝑐𝑡 (𝑟 + 𝑥𝑡 (𝑟 ))) 𝑑𝑟 ≥
𝑠+𝑥𝑡 (𝑧 )∫

𝑧+𝑥𝑡 (𝑧 )

𝑢′(𝑐𝑡 (𝑟 ))𝑑𝑟 . (5)

Proof. First, consider any 𝜖 > 0 and 𝑟1, 𝑟2, such that 𝑟1 > 𝑟2 and |𝑟1 − 𝑟2 | < 𝑢−1(𝜖). The
following

|𝑊𝑡 (𝑟1) −𝑊𝑡 (𝑟2) | ≤ max

𝑠
{|𝑢 (𝑟1 − ℎ(𝑠)) − 𝑢 (𝑟2 − ℎ(𝑠)) |} = 𝑢 (𝑟1 − 𝑟2) < 𝜖

together with concavity of𝑢 implies that𝑊𝑡 and𝑉𝑡 are absolutely continuous and therefore

the envelope theorem applies:

𝑊𝑡 (𝑟2) =𝑊𝑡 (𝑟1) +
𝑟2∫

𝑟1

𝑢′(𝑐𝑡 (𝑟 ))𝑑𝑟 , and

𝑉𝑡 (𝑠2) = 𝑉𝑡 (𝑠1) +
𝑠2∫

𝑠1

𝑢′(𝑐𝑡 (𝑠))𝑑𝑠.
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To see that the value functions are differentiable, consider the following:

𝑉𝑡 (𝑠 + 𝜖) −𝑉𝑡 (𝑠) =
max

𝑥≥0
{𝑊𝑡 (𝑠 + 𝜖 + 𝑥) − 𝑝𝑡 (𝑥)} −max

𝑥≥0
{𝑊𝑡 (𝑠 + 𝑥) − 𝑝𝑡 (𝑥)} ≥

𝑊𝑡 (𝑠 + 𝜖 + 𝑥𝑡 (𝑠)) −𝑊𝑡 (𝑠 + 𝑥𝑡 (𝑠)) ≥
max

ℎ (𝑠 )≤𝑠+𝜖+𝑥𝑡 (𝑠 )
{𝑢 (𝑠 + 𝜖 + 𝑥𝑡 (𝑠) − ℎ(𝑠)) + 𝛿𝑉𝑡+1(𝑠)} −max

ℎ (𝑠 )≤𝑠+𝑥𝑡 (𝑠 )
{𝑢 (𝑠 + 𝑥𝑡 (𝑠) − ℎ(𝑠)) + 𝛿𝑉𝑡+1(𝑠)} ≥

𝑢 (𝑐𝑡 (𝑠) + 𝜖) − 𝑢 (𝑐𝑡 (𝑠)) .
At the limit, when 𝜖 > 0 vanishes, we get

𝜕+𝑉𝑡 (𝑠) ≥ 𝜕+𝑊𝑡 (𝑠 + 𝑥𝑡 (𝑠)) ≥ 𝑢′(𝑐𝑡 (𝑠)) .
Similarly,

𝜕−𝑉𝑡 (𝑠) ≤ 𝜕−𝑊𝑡 (𝑠 + 𝑥𝑡 (𝑠)) ≤ 𝑢′(𝑐𝑡 (𝑠)) .
Since the inventory is a consumer’s choice, and 𝑢 (·) is differentiable, it must be that

𝜕−𝑉𝑡 (𝑠) ≥ 𝜕+𝑉𝑡 (𝑠) .
Thus,

𝜕−𝑉𝑡 (𝑠) = 𝜕+𝑉𝑡 (𝑠)
𝜕−𝑊𝑡 (𝑠 + 𝑥𝑡 (𝑠)) = 𝜕+𝑊𝑡 (𝑠 + 𝑥𝑡 (𝑠)),

and both value functions are differentiable at 𝑠 and 𝑠 + 𝑥𝑡 (𝑠) respectively.
The consumer’s choice 𝑥𝑡 (𝑠) is optimal if and only if

7

∀𝑠, 𝑧 :𝑊𝑡 (𝑠 + 𝑥𝑡 (𝑠)) − 𝑝 (𝑥𝑡 (𝑠)) ≥𝑊𝑡 (𝑠 + 𝑥𝑡 (𝑧)) − 𝑝 (𝑥𝑡 (𝑧))
We can rewrite this inequality as

∀𝑠, 𝑧 :𝑊𝑡 (𝑠 + 𝑥𝑡 (𝑠)) +𝑊𝑡 (𝑧 + 𝑥𝑡 (𝑧)) − 𝑝 (𝑥𝑡 (𝑠)) ≥𝑊𝑡 (𝑠 + 𝑥𝑡 (𝑧)) +𝑊𝑡 (𝑧 + 𝑥𝑡 (𝑧)) − 𝑝 (𝑥𝑡 (𝑧))
or

∀𝑠, 𝑧 : 𝑉𝑡 (𝑠) −𝑉𝑡 (𝑧) ≥𝑊𝑡 (𝑠 + 𝑥𝑡 (𝑧)) −𝑊𝑡 (𝑧 + 𝑥𝑡 (𝑧))
Using the envelope condition on both sides of the inequality we get

∀𝑠, 𝑧 ≥ 0 :

𝑠∫
𝑧

𝑢′ (𝑐𝑡 (𝑟 + 𝑥𝑡 (𝑟 ))) 𝑑𝑟 ≥
𝑠+𝑥𝑡 (𝑧 )∫

𝑧+𝑥𝑡 (𝑧 )

𝑢′(𝑐𝑡 (𝑟 ))𝑑𝑟 .

□

In this proposition, the inequality (5) plays a similar role to monotonicity of the allocation

with respect to type in static nonlinear pricing models.
8
In Section 5.1, where we construct

7
In addition to that, one needs to ensure that items on the menu that are never chosen on equilibrium path

have prohibitively high prices.

8
Ours is a model that combines adverse selection with moral hazard. In these models, a double deviations—i.e.,

agent choosing both the “wrong contract” 𝑥 and the “wrong effort” 𝑠 at the same time—potentially presents

an additional complication. See Castro-Pires, Chade and Swinkels (2024) for in-depth discussion of the issue.

However, in our setting a contract 𝑥 and “effort” 𝑠 are additive—this makes double deviations straightforward

to deal with.
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the equilibrium consumption rule, we verify that the induced 𝑐𝑡 (𝑟 ) indeed satisfies condition
(5). After the consumption rule is constructed, we can use envelope conditions (3) and (4)

to find the prices under which this rule is consumer-optimal. So far, we focused on the

optimality of consumer choice from a single menu. The next result brings intertemporal

incentives into the picture. It provides a necessary condition for optimal allocation of

the good across time. When combined with the resource constraint and the optimal

consumption rule, it pins down the equilibrium behavior of the consumers.

Proposition 2. Consider a consumer with an inventory 𝑠𝑡 in period 𝑡 . Define the consumer’s
choice of inventory for the next period as

𝑠𝑡+1 = ℎ−1(𝑠𝑡 + 𝑥𝑡 (𝑠𝑡 ) − 𝑐𝑡 (𝑠𝑡 )) .

If the consumer’s choices are optimal then the following inequalities hold and at least one of
them binds

𝛿−1ℎ′(𝑠𝑡+1)𝑢′(𝑐𝑡 (𝑠𝑡 )) ≥ 𝑢′(𝑐𝑡+1(𝑠𝑡+1))
𝑠𝑡 + 𝑥𝑡 (𝑠𝑡 ) ≥ 𝑐𝑡 (𝑠𝑡 ) .

Proof. Consider an auxiliary problem in which instead of buying 𝑥𝑡 (𝑠𝑡 ) and 𝑥𝑡+1(𝑠𝑡+1)
from the corresponding menus, the consumer receives these items for free. The optimality

of choice of consumption 𝑐𝑡 (𝑠𝑡 ) and 𝑐𝑡+1(𝑠𝑡+1) in the original problem implies that the

consumer would optimally choose the same consumption levels in the auxiliary problem.

The necessary condition for the optimality of consumption in the auxiliary problem is the

following:

ℎ′(𝑠𝑡+1)𝑢′(𝑐𝑡 (𝑠𝑡 )) = 𝛿𝑢′(𝑐𝑡+1(𝑠𝑡+1)) + 𝜆,

where 𝜆 ≥ 0 is a Lagrange multiplier for the constraint 𝑠𝑡+1 ≥ 0. The complementary

slackness condition is 𝜆𝑠𝑡+1 = 0. □

Propositions 1 and 2 do not invoke sellers’ incentives. Without assuming stationarity of

equilibrium, the sellers’ profit maximization problem is unwieldy because the state—the

distribution of consumers’ inventories—is infinite-dimensional and its evolution is complex.

Nevertheless, prior to assuming stationarity of this distribution and characterizing the

equilibria in Section 5, we can still derive some general properties of equilibria.

A combination of buyer’s and seller’s sequential rationality drastically narrows down

the set of menus that can potentially appear in equilibrium. On the one hand, the seller

sets prices in such a way as to leave no surplus to the consumer with certainty (the only

surplus that the consumer can retain arises from her private information). On the other

hand, the consumer controls what the seller knows with certainty about her valuation

through her choice of inventory. The following proposition formalizes this observation.
9

Proposition 3. Fix the menu offered by the seller 𝑡 and consider a consumer who chose to
arrive to period 𝑡 with inventory 𝑠 > 0. Suppose that this consumer purchases 𝑦1 from seller 𝑡 .

9
In nonlinear pricing context, a similar result arises in other settings with a dynamic demand (for example,

see Lemma 18 in Bhaskar and Roketskiy, 2021). More generally, it is related to differentiability of agent’s value

function in models of hold-up (e.g., see Fudenberg and Tirole, 1990, González, 2004, Gul, 2001).
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If there is an item 𝑦2 < 𝑦1 on the same menu, such that the consumer is indifferent between
buying 𝑦1 and 𝑦2. Then 𝑐𝑡 (𝑠 + 𝑦1) = 𝑐𝑡 (𝑠 + 𝑦2).

Proof. Let �̃� (𝑠) = max

𝑦∈{𝑦1,𝑦2}
{𝑊𝑡 (𝑠 + 𝑦) − 𝑝𝑡 (𝑦)}. Because the choice of 𝑠 is optimal, for

any 𝜖 > 0:

𝑢 (𝑟𝑡−1 − ℎ(𝑠)) + 𝛿�̃� (𝑠) ≥ 𝑢 (𝑟𝑡−1 − ℎ(𝑠 − 𝜖)) + 𝛿�̃� (𝑠 − 𝜖)
𝑢 (𝑟𝑡−1 − ℎ(𝑠)) + 𝛿�̃� (𝑠) ≥ 𝑢 (𝑟𝑡−1 − ℎ(𝑠 + 𝜖)) + 𝛿�̃� (𝑠 + 𝜖)

Given the definition of �̃� , these inequalities imply that for any 𝑦 ∈ {𝑦1, 𝑦2}

𝛿−1 [𝑢 (𝑟𝑡−1 − ℎ(𝑠 − 𝜖)) − 𝑢 (𝑟𝑡−1 − ℎ(𝑠))] ≤𝑊𝑡 (𝑠 + 𝑦) −𝑊𝑡 (𝑠 − 𝜖 + 𝑦)
𝛿−1 [𝑢 (𝑟𝑡−1 − ℎ(𝑠)) − 𝑢 (𝑟𝑡−1 − ℎ(𝑠 + 𝜖))] ≥𝑊𝑡 (𝑠 + 𝜖 + 𝑦) −𝑊𝑡 (𝑠 + 𝑦) .

Because 𝑢 (·), ℎ(·), and𝑊𝑡 (·) are differentiable, and𝑊 ′
𝑡 (𝑟 ) = 𝑢′(𝑐𝑡 (𝑟 )), we can divide both

sides of these two inequalities by 𝜖 , and in the limit, obtain

𝑢′(𝑐𝑡 (𝑠 + 𝑦1)) ≥ 𝑢′(𝑐𝑡 (𝑠 + 𝑦2)) ≥ 𝑢′(𝑐𝑡 (𝑠 + 𝑦1)),

and therefore,

𝑐𝑡 (𝑠 + 𝑦1) = 𝑐𝑡 (𝑠 + 𝑦2) .
□

This proposition can be illustrated with a clear and simple intuition. Even though

consumers are limited to shopping with a single seller each period, this seller has to

compete in marginal prices with the consumers’ past selves. Indeed, instead of purchasing

a marginal unit from the seller today, a consumer could consume less in the previous

period and increase her inventory. Because the consumers trade with their past selves

using linear prices, which are equal to marginal values of consumption, the sellers must

do so as well.

This competition à la Bertrand prevents the sellers from extracting the consumer surplus

in bulk by setting the prices to equalize the net values of two different options on the menu.

The only exception to this rule is a consumer without inventory (i.e., 𝑠 = 0). The seller can

sell a high quantity-low marginal price bundle and extract surplus at bulk by asking to

pay a fee for an access to this bundle. Despite the fact that the induced consumption in the

current period is high, the consumer cannot reallocate it to the previous period by storing

less because the inventory is at the zero bound.

This observation has an important implication for the nature of aggregate demand. If

there is a “lump” in demand, namely if there is a large number of consumers with the same

willingness to pay, the seller’s optimal response is a menu that extracts surplus in bulk—a

type of a menu that is essentially ruled out by Proposition 3. Thus, in equilibrium, one

should expect the market to be composed of (endogenously) heterogeneous population of

consumers.

Proposition 4. In any period except the first, consumers are heterogeneous in inventories
and sellers offer a variety of pack sizes on their menus.
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Proof. Recall that every menu must contain the outside option: 𝑝𝑡 (0) = 0. If there is a

seller that does not offer a variety of pack sizes—or more precisely, if there is a menu 𝑝𝑡
such that only the single pack size 𝑥 is purchased from it—there must be a consumer who

is indifferent between buying 𝑥 and not buying anything. Proposition 3 states that either

this consumer arrives to seller 𝑡 without inventory or the consumer’s inventory is 𝑠 > 0,

but the consumption does not change as a result of a purchase, namely 𝑐𝑡 (𝑠) = 𝑐𝑡 (𝑠 + 𝑥).
Moreover, because there is only one item for sale and the seller is maximizing profit, it

must be the case that the consumption is at the efficient level: 𝑢′(𝑐𝑡 (𝑠 + 𝑥)) = 𝑘 .

If the consumers has an empty inventory, it must be the case that

lim

𝑐→0

𝑢′(𝑐) ≤ 𝛿−1ℎ′(0)𝑢′(𝑐𝑡−1)

which violates our assumptions for any 𝑐𝑡−1 > 0.

If 𝑠 > 0, because 𝑢′(𝑐𝑡 (𝑠)) = 𝑢′(𝑐𝑡 (𝑠 +𝑥)) = 𝑘 , Proposition 2 implies that marginal utility

of consumption is strictly below 𝑘 in the previous period. This can only happen if one of

the previous sellers sold the good at a marginal price strictly below 𝑘 , which is impossible

if this seller is maximizing profit. Thus, in equilibrium in each period except possibly the

first one, the seller offer a variety of packs on the menu.

If there is a period 𝑡 in which consumers are homogeneous in their inventories, it is

optimal for the seller 𝑡 to offer a single pack size, which is a contradiction. □

The key to this result is Proposition 3. On the one hand, a single item in the menu

combined with the seller’s sequential rationality implies that the surplus is extracted in

bulk in a nonlinear fashion. On the other hand, Proposition 3 implies that everything that

is sold in this period is stored. Put differently, the consumer resells what she purchased

to her future self using a linear (shadow) price which is equal to the marginal utility of

consumption. If a good is bought at a nonlinear price and resold at the linear one, the

consumer incurs a loss, and therefore, she would better off not doing it.

Propositions 1, 2 and 3 combined with the resource constraints are sufficient to character-

ize the consumers’ behavior and prices in stationary equilibria. The results in Propositions 1,

2, 3 and 4 do not rely on the fact that the sellers are short-lived or that they do not observe

the menus offered to consumers in the past. When we study long-lived monopolist in

Section 6, we use these results to characterize the equilibrium prices for that alternative

setting.

5 STATIONARY EQUILIBRIA
In a stationary equilibrium

10
, any two sellers face the same aggregate demand for their

good; the menus and consumers’ value functions do not depend on calendar time. To

simplify exposition and pave the way for clear intuition behind our results, we assume

that the cost of storage is linear. Generalizing our analysis to a case of nonlinear storage

cost is straightforward.

Assumption 5. ℎ(𝑠) = 𝛽𝑠, 𝛽 > 1.

10
Formally, to define a stationary equilibrium we either need to make the time horizon infinite in both

directions, or assume an initial cross-section distribution of inventories that coincides with the stationary one.
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In the equilibrium that we construct, consumers’ choices follow a cyclical pattern. The

cycle starts when the consumer attends a shop and buys a large amount of good to fill her

inventory. After that, the consumer does not shop for several periods and consumes the

stored good. This gradually depletes her inventory. Towards the end of the cycle, there is

insufficient amount of stored good to fulfill her consumption requirement. At that point,

the consumer visits the store and purchases a small top-up bundle. Then, she consumes

the bundle together with leftovers to arrive to the beginning of the next cycle with the

empty storage.

In addition, when stockpiling, different consumers purchase different amounts, thus

creating a heterogeneity in inventories. This heterogeneity persists throughout the cycle.

The sellers respond to it by offering screening menus. In the remainder of this section we

formalize these ideas and discuss every aspect of this equilibrium in great detail, starting

with consumption.

5.1 Equilibrium consumption
The condition for optimality ties the levels of consumption across adjacent periods together.

This allows us to construct the consumption stream and then find the (nonlinear) prices

that, on the one hand, maximize seller’s payoff and, on the other, induce this consumption

stream.

We conjecture and verify that every consumer follows the same consumption sequence

in the stationary equilibrium (in an asynchronous way).
11
Consider a consumer who has

some amount of good stored: 𝑠𝑡 > 0. Proposition 2 implies that

𝛽𝑢′(𝑐𝑡−1) = 𝛿𝑢′(𝑐𝑡 ) .
Because the sellers are short-lived, a standard no-distortion-at-the-top argument implies

that a consumer with no inventory must consume at the efficient level 𝑐∗ : 𝑢′(𝑐∗) = 𝑘 .

Thus, we can define a sequence {𝑐𝜏 }𝜏=0,1,... that satisfies
𝑢′(𝑐𝜏 ) = (𝛿−1𝛽)𝜏𝑢 (𝑐∗) = (𝛿−1𝛽)𝜏𝑘. (6)

For cyclical behavior, it is convenient to use an index that indicates the time period

withing a cycle. This index 𝜏 runs from 0 to some 𝑇 and then gets reset to 0 to start a

new cycle.
12
The length of the cycle 𝑇 + 1 is endogenous and it depends on the storage

technology 𝛽 . Intuitively, the better the storage technology, the less frequent the shopping,

the longer the cycle.

Let 𝑐 (𝑠), 𝑥 (𝑠), 𝑠 (𝑠) and 𝑎(𝑠) be stationary consumer-optimal rules that describe consumer

choices conditional on the current inventory level 𝑠 . As shown on Figure 1, at the beginning

of each cycle, consumer’s storage is empty. The consumer buys a large amount of good

𝑥 (0) = 𝑥0 to fill up her storage. She consumes the efficient amount 𝑐 (0) = 𝑐0 = 𝑐∗ and puts

the rest of the good into the storage:

𝛽𝑠 (0) = 𝑥0 − 𝑐0.

11
This is a consequence of linear costs of storage. Strictly convex costs would cause heterogeneity in consump-

tion streams. Similarly, a heterogeneity in storage cost would also imply variation in consumption streams

across consumers.

12
We denote calendar time with a subscript and time within a cycle by a superscript.
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𝜏 = 0

𝜏 = 𝑇

𝜏 = 𝑇 − 1

. . .

𝜏 = 1

𝑠

𝑥 (𝑠) = 0

𝑐 (𝑠) = 𝑐𝜏

𝛽𝑠 (𝑠) = 𝑠 − 𝑐𝜏

𝑥 (𝑠) = 𝑐𝑇 − 𝑠

𝑐 (𝑠) = 𝑐𝑇

𝛽𝑠 (𝑠) = 0

. . .

. . .
0 𝑐𝑇 𝑐𝑇−1 𝑐𝑇−1 + 𝛽𝑐𝑇 𝑇−1∑

𝜏=1
𝛽𝜏𝑐𝜏

𝑇∑
𝜏=1

𝛽𝜏𝑐𝜏

𝑥 (𝑠) = 𝑥0

𝑐 (𝑠) = 𝑐0 = 𝑐∗

𝛽𝑠 (𝑠) = 𝑥0 − 𝑐0

Fig. 1. Consumer cycles
Note: A diagram of a consumer cycle with transitions illustrated for a single consumer who purchases

𝑥 (0) = 𝑥0 ∈
[
𝑇−1∑
𝜏=0

𝛽𝜏𝑐𝜏 ,
𝑇∑
𝜏=0

𝛽𝜏𝑐𝜏
]
in the beginning of the cycle. The shaded areas represent a density for the

distribution of inventories conditional on the time index of the cycle 𝜏 .

As the cycle progresses, the consumer does not visit the seller and gradually depletes her

inventory by consuming according to the sequence {𝑐𝜏 }𝜏=0,1,...,𝑇 . This continues until her
inventory at the cycle time 𝜏 = 𝑇 is insufficient to meet her consumption needs 𝑐𝑇 : 𝑠 ≤ 𝑐𝑇 .

At that point she buys a small top up bundle 𝑥 (𝑠) = 𝑐𝑇 − 𝑠 from the seller and consumes

everything at her disposal. At the end of the cycle, the consumer has nothing left in her

storage and she restarts the cycle by stockpiling.

The stationary consumer-optimal rules are not unique. There is an interval of optimal

quantities that are purchased by a consumer without inventory:

𝑥 (0) ∈
[
𝑇−1∑︁
𝜏=0

𝛽𝜏𝑐𝜏 ,

𝑇∑︁
𝜏=0

𝛽𝜏𝑐𝜏

]
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They choose the quantity in such a manner as to generate the equilibrium distribution of

inventories. We characterize this distribution in the next section.

This purchasing behavior combined with our earlier point about deterministic consump-

tion sequence {𝑐𝜏 }𝜏=0,1,...,𝑇 implies that on-path inventory for the consumer at the cycle

time 𝜏 lies in the interval 𝑆𝜏 =
[
𝑠𝜏 , 𝑠𝜏

]
, where

𝛽𝑠𝜏 = 𝑠𝜏−1 − 𝑐𝜏−1

𝛽𝑠𝜏 = 𝑠𝜏−1 − 𝑐𝜏−1

𝛽𝑠1 =

𝑇−1∑︁
𝜏=0

𝛽𝜏𝑐𝜏 − 𝑐∗

𝛽𝑠1 =

𝑇∑︁
𝜏=0

𝛽𝜏𝑐𝜏 − 𝑐∗

𝑠0 = 𝑠0 = 0

Thus, the on-path consumer-optimal rules are

∀𝑠 ∈ 𝑆𝜏 , 𝜏 ∉ {0,𝑇 } : 𝑐 (𝑠) = 𝑐𝜏 , 𝑠 (𝑠) = 𝛽−1(𝑠 − 𝑐𝜏 ) and 𝑥 (𝑠) = 0. (7)

The off-path part of the consumption rule can be defined using Proposition 2: if the

consumer has inventory 𝑠 ∈ (𝑠𝜏 , 𝑠𝜏−1), she consumes it in an optimal way and does not

visit the sellers until she runs out. When her inventory is empty, she is back on equilibrium

path.

There are two additional considerations. First, the cycles are not synchronized across the

consumers. In the stationary equilibrium, the share of consumers that are consuming 𝑐𝜏 at

a certain period is 1/(𝑇 + 1). This way, the distribution of inventories in the population is

time-invariant.

Second, this consumption rule (extended to the off path values of inventories) satisfies

the condition (5) of Proposition 1. Therefore, we can find the menu pricing under which

this consumption choice 𝑐 together with the choice from the menu 𝑥 is optimal.

5.2 Equilibrium prices
Now that we characterized optimal consumption, we can look for the menu that, on the

one hand, induces this consumption, and on the other hand, is seller-optimal.

Consider a seller facing a population of consumers whose inventories are private and

distributed according to some distribution 𝐹 . Formally, this distribution is 𝐹 (𝑧) = 𝜇 ({𝑖 :
𝑠𝑖 ≤ 𝑧, 𝑎𝑖 = 1}), where 𝜇 is the measure defined on the set of consumers and 𝑠𝑖 and 𝑎𝑖 are

measurable functions that captures consumers’ inventories and shopping behavior in the

current period.

Proposition 6. There exists a stationary menu such that 𝑐 (𝑠) defined in equation (7) is
consumer-optimal and maximizes seller’s profits. Under this stationary menu:
(i) The consumers shop only at the beginning and the end of their consumption cycle. The

distribution 𝐹 of inventories among consumers who attend the seller has the support
𝑆0 ∪ 𝑆𝑇 = [0, 𝑐𝑇 ].
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(ii) The distribution 𝐹 solves

𝐹 ′(𝑠) [𝑢′(𝑐 (𝑠)) − 𝑘] = −𝐹 (𝑠)𝑢′′(𝑐 (𝑠)) . (8)

Proof. To prove this proposition we first construct the stationary menu that induces 𝑐 (·).
Then we look for the distribution of inventories under which such a menu is seller-optimal.

By Proposition 1, the menu that induces 𝑐 must satisfy

𝑝 (𝑥 (𝑠)) = 𝑢 (𝑐 (𝑠)) + 𝛿𝑉 (𝑠 (𝑠)) +
𝑐𝑇∫

𝑠

𝑢′(𝑐 (𝑧))𝑑𝑧 −𝑉 (𝑠) . (9)

To show that, recall that 𝑝 (𝑥 (𝑠)) = 𝑢 (𝑐 (𝑠)) + 𝛿𝑉 (𝑠 (𝑠)) −𝑉 (𝑠) . By integrating the envelope

condition (4) we obtain

𝑉 (𝑠) = 𝑉 (𝑐𝑇 ) −
𝑐𝑇∫

𝑠

𝑢′(𝑐 (𝑧))𝑑𝑧.

Combining this with the formula for the price yilds equation (9). Given the prices, we can

calculate the seller’s aggregate profit:

𝜋 =

∫ 𝑢 (𝑐 (𝑠)) + 𝛿𝑉 (𝑠 (𝑠)) − 𝑘𝑥 (𝑠) −𝑉 (𝑐𝑇 ) +
𝑐𝑇∫

𝑠

𝑢′(𝑐 (𝑧))𝑑𝑧
 𝑑𝐹 (𝑠) .

The equation (8) is a first order condition for the programme that maximizes profit point-

wise for each level of inventory 𝑠 . Note that the profit extracted from a consumers with a

given inventory 𝑠 is concave in 𝑐 , therefore the first order condition is both necessary and

sufficient for the optimality of the menu.

Note that

𝑥 (𝑠) =

𝑥0, if 𝑠 = 0,

𝑐𝑇 − 𝑠, if 𝑠 ∈ (0, 𝑐𝑇 ],
0, otherwise.

where 𝑥0 > 𝑐𝑇 is different for different consumers. This implies that it is optimal for

consumers with 𝑠 ≥ 𝑐𝑇 not to attend the seller. All consumers with 𝑠 < 𝑐𝑇 strictly prefer to

shop. What remains to show is that the constructed 𝑥 (𝑠) satisfies equation (5). Note that

for any stationary menu, 𝑐 (𝑟 ) is increasing and therefore 𝑢′(𝑐 (𝑟 )) is decreasing in 𝑟 . Given
this monotonicity, any decreasing function 𝑥 (𝑠) satisfies condition (5). □

The next step in our analysis is to construct the distribution of inventories 𝐹 and link it

to the length of the consumption cycle. Suppose that all the consumers whose consumption

is 𝑐0 and a fraction 𝛼 of the consumers whose consumption is 𝑐𝑇 in the current period

attend the seller:

𝜇 ({𝑖 : 𝑎𝑖 = 1, 𝑐𝑖 = 𝑐}) =


1

𝑇+1 , if 𝑐 = 𝑐0

𝛼
𝑇+1 , if 𝑐 = 𝑐𝑇

0, otherwise.
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Then, the share of the consumers who attend the shop with an empty storage is 𝐹 (0) = 1

1+𝛼
and every consumer at the shop has inventory below 𝑐𝑇 , therefore 𝐹 (𝑐𝑇 ) = 1. We rewrite

quation (8) as

𝐹 ′(𝑠) = 𝐹 (𝑠) −𝑢′′(𝑐𝑇 )
𝑢′(𝑐𝑇 ) − 𝑘

,

and integrate it to obtain

log(1 + 𝛼) = −𝑐𝑇𝑢′′(𝑐𝑇 )
𝑢′(𝑐𝑇 ) − 𝑘

. (10)

This gives us the share of the consumers 𝛼 = 1 − 𝑒
−𝑐𝑇 𝑢′′ (𝑐𝑇 )
𝑢′ (𝑐𝑇 )−𝑘 .

The share 𝛼 is crucial in finding the length of the consumer cycle.

Proposition 7. Let T solve 𝑐T𝑢′′(𝑐T) +
(
𝑢′(𝑐T) − 𝑘

)
log 2 = 0. For any integer 𝑇 > T ,

there exists a stationary equilibrium with the consumption cycle of length 𝑇 .

Proof. Consider equation (10). Because 0 ≤ 𝛼 ≤ 1, it must be the case that

log 2 ≥ −𝑐𝑇𝑢′′(𝑐𝑇 )
𝑢′(𝑐𝑇 ) − 𝑘

> 0.

There always exists 𝑇 that satisfies the inequality since the right-hand side is arbitrarily

close to zero when 𝑇 gets arbitrarily large. Moreover, because 𝑢′′′(𝑐) ≤ 0 for all 𝑐 , there

exists a threshold T such that any 𝑇 > T , 𝑐𝑇 satisfies (10). □

Note that the distribution 𝐹 can be constructed only if some consumers with high level

of inventory do not go shopping. Our modeling choice with additional decision 𝑎𝑖,𝑡 allows

for it. Of course, as we showed in the proof of Proposition 6, for these consumers not

shopping is an optimal choice. The seller’s menu is such that should a consumer who stays

at home visit the seller, she would find the item 𝑥 = 0 to be the most attractive given how

much inventory she has.

The entire distribution of inventory (i.e, without conditioning on 𝑎𝑖,𝑡 = 1) has a support

{0} ∪ [0, 𝑐𝑇 ] ∪ [𝑐𝑇−1, 𝛽𝑐𝑇 + 𝑐𝑇−1] ∪ [𝛽𝑐𝑇−1 + 𝑐𝑇−2, 𝛽2𝑐𝑇 + 𝛽𝑐𝑇−1 + 𝑐𝑇−2] ∪ ...

∪
[
𝑇−1∑︁
𝜏=1

𝛽𝜏−1𝑐𝜏 ,
𝑇∑︁
𝜏=1

𝛽𝜏−1𝑐𝜏

]
.

The distribution in these intervals are clones of each other scaled by 𝛽 . On [0, 𝑐𝑇 ] there
are two mass points. One mass point of

1−𝛼
𝑇+1 at 𝑐𝑇 and the other mass point of 1/(𝑇 + 1) at

0. Formally, the distribution is

𝜇 ({𝑖 : 𝑠𝑖 < 𝑠}) = 1

𝑇 + 1


1, if 𝑠 = 0,

𝑒
−𝑠𝑢′′ (𝑐𝑇 )
𝑢′ (𝑐𝑇 )−𝑘 , if 𝑠 ∈ (0, 𝑐𝑇 ),

2, if 𝑠 = 𝑐𝑇 .

(11)

Proposition 7 states that there are multiple stationary equilibria. If an equilibrium with

a length of the cycle 𝑇 + 1 exists, one can construct an equilibrium for any 𝑇 + 1 > 𝑇 + 1

as well. These equilibria are Pareto ordered because they share the first 𝑇 + 1 elements of
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the consumption stream. The multiplicity is caused by a coordination failure: If the sellers

expect the consumers to shop less frequently, the equilibrium menus induce longer cycles

and vice versa. Thus, it is natural to consider an equilibrium with the shortest cycle as the

most relevant. For the rest of the analysis we focus on the equilibrium with the shortest

cycle length.

0 𝑥

𝑝 (𝑥)

𝑐𝑇
𝑥∗ =

𝑇−1∑
𝜏=0

𝛽𝜏𝑐𝜏

𝑝 (𝑥∗)

𝑇∑
𝜏=0

𝛽𝜏𝑐𝜏

(𝛿−1𝛽)𝑇𝑘

𝑘

Fig. 2. Equilibrium menu.
Note: solid black lines represent items available on the menu; red line represents the indifference condition
that relates prices in different parts of the menu to each other.

There are two features of the equilibria that help us identify prices. First, only consumers

with inventory 𝑠 ∈ [0, 𝑐𝑇 ] shop. Second, these consumers either consume 𝑐∗ (if 𝑠 = 0) or 𝑐𝑇

(if 𝑠 ∈ (0, 𝑐𝑇 ]). Thus, the marginal prices at which these consumers buy product are 𝑢′(𝑐𝑇 )
for small items 𝑥 ∈ [0, 𝑐𝑇 ] and 𝑢′(𝑐∗) for large items.

When the consumer has no inventory, she has two optimal ways to proceed. She can

either reset the consumption cycle by stockpiling or buy another top-up item and consume

𝑐𝑇 for one more period. This indifference pins down the premium this consumer pays for

large bundles. In particular, consider 𝑥∗ =
𝑇−1∑
𝜏=0

𝛽𝜏𝑐𝜏 that costs 𝑝∗:

(1 − 𝛿)𝑉 (0) = 𝑢 (𝑐𝑇 ) − (𝛿−1𝛽)𝑇𝑘𝑐𝑇

(1 − 𝛿𝑇 )𝑉 (0) =
𝑇−1∑︁
𝜏=0

𝛿𝜏𝑢 (𝑐𝜏 ) − 𝑝∗.
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Therefore,

𝑝∗ =
𝑇−1∑︁
𝜏=0

𝛿𝜏𝑢 (𝑐𝜏 ) − 1 − 𝛿𝑇

1 − 𝛿

(
𝑢 (𝑐𝑇 ) − (𝛿−1𝛽)𝑇𝑘𝑐𝑇

)
. (12)

We summarize the description of the equilibrium menu in the following Proposition (also,

see Figure 2).

Proposition 8. Each seller 𝑡 offers two types of items in a stationary equilibrium:
(i) shop-to-mouth (or top-up) items are priced linearly with a constant markup: for any

𝑥 ≤ 𝑐𝑇 :

𝑝𝑡 (𝑥) = (𝛿−1𝛽)𝑇𝑘𝑥 ;

(ii) items for stockpiling are priced via a two-part tariff: for any 𝑥 ≥
𝑇∑
𝜏=0

𝛽𝜏𝑐𝜏 :

𝑝𝑡 (𝑥) = 𝑝∗ + 𝑘 (𝑥 − 𝑥∗);

(iii) no other items are available: for any 𝑥 ∈
(
𝑐𝑇 ,

𝑇∑
𝜏=0

𝛽𝜏𝑐𝜏
)
: 𝑝𝑡 (𝑥) = ∞.

Proof. Since the consumption 𝑐 (𝑠) is piece-wise flat, the marginal price is constant—i.e.,

the menu is piece-wise linear. Moreover, the marginal price should be equal to the marginal

utility of consumption, namely, 𝑘 and (𝛿−1𝛽)𝑇𝑘 for the two segments. Finally, the intercept

for the part of the menu that features larger bundles is characterized by (12). □

This menu is optimal in the space of all menus. However, given the linear cost of storage,

it is instructive to look at this menu from the point of view of a simple model of price

competition à la Bertrand.

Consider a single cohort of consumers—i.e., all the consumers who consume the same

amount within a period. Across the consumption cycle, the good is sold to them by two

sellers separated by 𝑇 periods in time. Indeed, when the consumer buys a top-up bundle,

some of the good is supplied by the current seller and the rest comes from consumer’s

inventory, which means that it was sold to her by another seller 𝑇 periods ago.

These two sellers compete in marginal prices for the part of consumption stream that

occurs at the end of consumption cycle:

(i) the two sellers cannot observe each others’ menus when setting their own;

(ii) the ability to store allows the consumers to fine-tune how they procure their con-

sumption stream: if a consumer buys one less marginal unit from the first seller (when

stockpiling), she can buy one more marginal unit from the seller𝑇 periods later when

topping up her consumption in that period to 𝑐𝑇 .

(iii) The seller that operates in the last period of the consumption cycle has an advantage

over the seller from 𝑇 periods prior to that—the former procures the good at the

marginal cost 𝑘 , whereas the latter does so at the effective marginal cost (𝛿−1𝛽)𝑇𝑘
due to costly storage and discounting.

Such a competition results in marginal prices being driven to the largest of the two

marginal costs, namely to (𝛿−1𝛽)𝑇𝑘 . The seller that sells top ups makes profit on those

since his marginal cost is 𝑘 . At the same time a marginal unit sold for stockpiling brings
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zero marginal profit. However, the part of the menu that is meant for stockpiling still

generates profit because the consumers cannot buy good for the first 𝑇 − 1 periods of the

consumption cycle cheaply from any other seller. If the consumer has no inventory, the

seller has market power when selling a good that is consumed immediately.

It is not surprising that large bundles meant for stockpiling appear in the equilibrium

menu in the context of storable good
13
The presence of small bundles that are meant to

be instantaneously consumed is less obvious, and it warrants a discussion. These bundles

have an equilibrium nature—i.e., their presence cannot be explained using optimal pricing

arguments alone.

These small, top-up bundles appear on the sellers’ menus because consumers exhibit

precautionary motives. If the seller were certain that consumers who show up at his store

have no inventories, he would set high prices and exploit the fact that his customers have

no alternative way to source the good. As a precaution, some consumers keep a small

unpredictable amount of good in their storage towards the end of their consumption cycle.

Thus, the seller has no choice but to screen such consumers from the ones that have no

inventory by offering them small bundles.

5.3 Consumer surplus
Storage plays a central role in intertemporal arbitrage since it allows the consumer to avoid

frequently buying small quantities at high per-unit price. It stirs up competition between

sellers in different periods and helps to retain consumer surplus even when consumers are

homogeneous in their tastes.

A surprising implication is that storage helps consumers obtain a certain amount of

consumer surplus regardless of the cost of storage as long as consumers can choose the

frequency of shopping. In particular, when storage is very costly, the consumers counter it

by keeping smaller inventories and shopping more frequently. The sellers optimally adjust

the prices in a way that keeps consumer surplus at a level that only depends on the shape

of the utility function and not on the details of the storage technology or discounting.

To see this, consider the value of the consumer with an empty storage, i.e., 𝑉 (0). Let

U(𝑝) := (1 − 𝛿)−1max

𝑐≥0
{𝑢 (𝑐) − 𝑝𝑐}

be the indirect utility of the consumer who can always buy the storable good at linear

price 𝑝 . This function is decreasing in 𝑝 . Note, that for 𝑝𝑇 = (𝛿−1𝛽)𝑇𝑘 ,

𝑉 (0) = (1 − 𝛿)−1
(
𝑢 (𝑐𝑇 ) − (𝛿−1𝛽)𝑇𝑘𝑐𝑇

)
= U(𝑝𝑇 ). (13)

The following result summarizes our characterization of the consumer surplus.

Proposition 9. In the equilibrium with the shortest consumption cycle, the consumer
surplus of a consumer without inventory is

𝑉 (0) = U(𝑝𝑇 ),

13
For instance, the optimal menu found in Hendel et al. (2014) is designed to supply the consumer with ample

amount of good eliminating the need for frequent restocking.
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where14

𝑝𝑇 = 𝑘 exp

(⌈
log𝑝 − log𝑘

log(𝛿−1𝛽)

⌉
log(𝛿−1𝛽)

)
and 𝑝 solves

log 2 =
−𝑢′−1(𝑝)𝑢′′(𝑢′−1(𝑝))

𝑝 − 𝑘
. (14)

Proof. This result follows directly from the characterization of the shortest equilibrium

consumption cycle (see Proposition 7). □

This proposition makes two points. First, the equilibrium consumer surplus is same as

if the consumers were presented with a stationary linear price 𝑝𝑇 . This tells us that the

ability to store the good allows the consumers to un-bundle items offered by sellers and

linearize nonlinear pricing. Second, the price 𝑝𝑇 is “close” to the price 𝑝 in the sense that

the difference between the two is an artifact of modelling the problem in discrete time.

Indeed, suppose the parameters of the model are such 𝑝𝑇 > 𝑝 . We can always split the

period of our model into subperiods in such a way that

(i) the total storage cost (and discounting) per unit of time remains the same;

(ii) 𝑝𝑇 = 𝑝 for the newly defined time periods.

Note that 𝑝𝑇 > 𝑝 occurs because the consumers cannot fine-tune the frequency of

shopping to their cost of storage. If the time grid is sufficiently fine, this issue does not

arise. We illustrate this point on Figure 3 which shows the comparative statics of the price

𝑝𝑇 with respect to the effective cost of storage 𝛿−1𝛽 .
Thus, if we disregard the integer nature of shopping frequency, the consumer surplus

is equal to U(𝑝). The consumer surplus is essentially independent of cost of storage

and is determined entirely by the curvature of consumer’s utility and marginal costs of

production: the two parameters that guide optimal intertemporal decisions of the social

planner. This result echoes the finding of Hendel et al. (2014) who show that the consumer

surplus is independent of the consumers’ storage capacity.

6 INFORMATION AND MARKET STRUCTURE
In our mainmodel we assume that each seller is active for one period only and that a current

seller does not observe past pricing. Both assumptions make significant contributions

towards tractability—without them, in order to characterize equilibria one would need to

keep track of a distribution of inventories in the population both on and off equilibrium

path. Moreover, both on and off path menus should be optimal given these distribution and

the evolution of the distribution should be consistent with the consumer optimal choice

from these menus.

Solving such a model would be impractical. To shed light on the effects of various infor-

mation and market structure we propose an alternative approach. We use an equilibrium

in the two-period version of our model as a benchmark and explain how it changes when

(i) short-lived sellers can observe past menus; or when

(ii) there is a long-lived seller operating in both periods.

14
The notation ⌈𝑥⌉ represents the smallest integer larger than 𝑥 .
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1.1 1.2 1.3 1.4 1.5 1.6

𝛿−1𝛽

𝑝

𝑝
𝑇

Fig. 3. Comparative statics of the price 𝑝𝑇 with respect to the effective cost of storage 𝛿−1𝛽 .
Note: Dotted line is the solution 𝑝 to equation (14); solid line is price 𝑝𝑇 ; dashed bold line is price 𝑝𝑇 with the
length of the time period shortened by the factor of 3.

We show that there is a close connection between our main model with infinite time

horizon and the two-period benchmark. Thus, analyzing two-period model is helpful in

developing intuition for the effects of information and presence of a long-lived seller in a

more realistic setting with infinite time horizon.

We find that better information on past prices leads to higher prices. This occurs because

sellers can credibly offer a lower variety of bundles. As a result, the consumers have less

flexibility in terms of storing the good and, therefore, lower bargaining power. In addition

to that, when the consumers shop repeatedly with the same seller, this long-lived seller

creates deficit by offering smaller bundles than under serial monopoly. The seller does so

to reduce cannibalization of the future demand by current sales.

6.1 Benchmark
This benchmark is the two-period version of our model that uses the same assumptions on

information and market structure as our main model. In particular, the good is supplied by

the serial monopoly and first-period pricing is not observed by the second-period seller.

When we introduce new features into our analysis—e.g., a long-lived seller—we compare

the resulting equilibrium with this benchmark.

The results from the main model carry over to this two-period version almost entirely.

Propositions 1, 2, 3, 4 and 6 are valid in this setup. The only difference lies in the equilibrium
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menus and the distribution of the inventories. Because the stationarity condition does not

apply in the two-period models, the first- and second-period menus are different and at

the end of the second period every agent’s storage is empty.

Nevertheless, conceptually, the menus have similar structure to the one characterized

in Section 5.2. The first period menu offers a collection of items for stockpiling. It is

implemented via the two part tariff with a per-unit price equal to the marginal cost of

production. The smallest item available on the menu is 𝑐∗ and it costs 𝑝∗
1
= 𝑢 (𝑐∗). Thus,

𝑝1(𝑥) =
{
𝑢 (𝑐∗) + 𝑘 (𝑥 − 𝑐∗), if 𝑥 ≥ 𝑐∗;

∞, if 𝑥 < 𝑐∗.

In the second period, the seller offers the top-up items priced linearly with a positive

markup. In addition to these, the seller offers and item 𝑐∗ targeting consumers who did

not store any good from the first period. This item is offered with a quantity discount

compared to the smaller items. In particular,

𝑝1(𝑥) =

𝛿−1𝛽𝑘𝑥, if 𝑥 ≤ 𝑐1;

𝑢 (𝑐∗) − 𝑢 (𝑐1) + 𝛿−1𝛽𝑘𝑐1 + 𝑘 (𝑥 − 𝑐∗), if 𝑥 ≥ 𝑐∗;

∞, if 𝑥 ∈ (𝑐1, 𝑐∗).

The equilibrium menus are depicted on Figure 4. Just like in the main model, the choice of

inventories in the first period is random and the distribution can be characterized using

Proposition 6.

One can view the stationary menu from Section 5.2 as the first and the second period

menus merged into one as long as the consumption cycle has a length 𝑇 + 1 = 2. This

means that the two period model directly compares to our main model only when the cost

of storage is sufficiently large and T ≤ 1 (see Proposition 7). If T > 1, we should expect

some artifacts arising in the two-period model that are caused by the limited time-horizon.

6.2 Observable past prices
In the market for storable good, concerns about consumer privacy arise even when the pop-

ulation is completely homogeneous in terms of taste. We showed that private inventories

determine the willingness to pay, therefore sellers’ access to any data that is informative of

the distribution of inventories is bound to have an effect on prices and other equilibrium

variables of interest.

To illustrate the effect of price data availability, we study a different information structure

under which the sellers observe past pricing. Intuitively, if in the past the prices were high,

it is natural to expect consumers to have fewer goods in their storage.

If the past pricing is publicly observed, it is optimal for the first seller to offer a single

item on the menu to limit consumers’ private information in the second period. Suppose

the first seller offers 𝑥1. The optimal second-period menu and consumer choices depend

on 𝑥1 as it is part of a public history. We use Proposition 2 to characterize the consumption

stream following history 𝑥1. Whenever 𝑠 > 0,

𝛽𝑢′(𝑥1 − 𝛽𝑠) = 𝛿𝑢′(𝑐2(𝑠)) . (15)
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0 𝑥

𝑝1(𝑥)

𝑐∗

𝑢 (𝑐∗)

𝑐∗ + 𝛽𝑐1

𝑘

(a) Menu at 𝑡 = 1;

0 𝑥

𝑝2(𝑥)

𝑐1 𝑐∗

𝑢 (𝑐∗) − 𝑢 (𝑐1)
+𝛿−1𝛽𝑘𝑐1

𝛿−1𝛽𝑘

𝑘

(b) Menu at 𝑡 = 2;

Fig. 4. Equilibrium menus.
Note: solid black lines represent items available on the menu; red line represents the indifference condition
that relates prices in different parts of the menu to each other.

Let 𝐹 be a distribution of consumer inventory 𝑠 . Also, let 𝑠 and 𝑠 be the upper and the

lower bounds of the support of 𝐹 . Consumers with inventory 𝑠 do not buy from the second

seller—it follows from the seller’s sequential rationality and Proposition 3. They consume

𝑠 in the second period. In this case, equation (15) pins down 𝑠:

𝛽𝑢′(𝑥1 − 𝛽𝑠) = 𝛿𝑢′(𝑠) .

The consumers with inventory 𝑠 consume 𝑐∗ (as long as 𝑠 ≤ 𝑐∗, but this bound is not

relevant on equilibrium path). Thus, the lower bound 𝑠 = 0 if 𝛽𝑢′(𝑥1) > 𝛿𝑘 , and otherwise

it solves

𝛽𝑢′(𝑥1 − 𝛽𝑠) = 𝛿𝑘.

By Proposition 6,

𝐹 ′(𝑠) [𝑢′(𝑐2(𝑠)) − 𝑘] = −𝐹 (𝑠)𝑢′′(𝑐2(𝑠)), (16)

with the boundary condition 𝐹 (𝑠) = 1. The equations (15) and (16) together with the

conditions for the bounds on inventories fully characterize equilibrium behavior in the

second period given a first-period menu that features a single item 𝑥1.
15

Even though consumers diverge in their decisions, the value each get from buying 𝑥1
from the seller is the same. Therefore, by selling 𝑥1 in the first period, the seller collects

profit

𝜋1(𝑥1) = 𝑢 (𝑥1 − 𝛽𝑠) + 𝛿𝑢 (𝑠) − 𝑘𝑥1 − 𝛿𝑉2(0) .
In this expression, both 𝑠 and 𝑉2(0) depend on 𝑥1.

15
Recall that 𝑐2 (𝑠), 𝑠, 𝑠, 𝐹 (𝑠) and 𝑉2 (𝑠) depend on 𝑥1. For brevity, we omit 𝑥1 from the list of the arguments of

these functions.
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The seller’s maximization problem has an unusual property that both the inside and

the outside options that consumer face are endogenous to 𝑥1. For the value of the inside

option, the dependence on 𝑥1 is straightforward, but for the value of the outside option, it

is not.

The menu offered to the consumers in the second period (and, therefore, the consumers’

expectation of this menu) depends on the amount of good the consumers have in period

1, i.e., on 𝑥1. The largest item on the second-period menu is purchased by the consumer

with the lowest level of inventory. Note that opting out for the outside option in the first

period would force consumer to have an empty inventory in the second period—in this

case, the consumer will buy the largest item on the menu (usually, at a price below the

value of this item). Thus, the value of the outside option in period 1 depends on the menu

that is offered in this very period.

Because

𝑉2(0) = 𝑢 (𝑠) + 𝑢 (𝑥2(𝑠)) − 𝑢 (𝑐2(𝑠)) −
𝑠∫

𝑠

𝑢′(𝑐2(𝑠))𝑑𝑠 =

= 𝑢 (𝑠) + 𝑢 (𝑥2(𝑠)) − 𝑢 (𝑐2(𝑠)) + 𝛿−1 [𝑢 (𝑥1 − 𝛽𝑠) − 𝑢 (𝑥1 − 𝛽𝑠)],

we obtain

𝜋1(𝑥1) = 𝑢 (𝑥1 − 𝛽𝑠) − 𝑘𝑥1 + 𝛿 [𝑢 (𝑐2(𝑠)) − 𝑢 (𝑥2(𝑠))] . (17)

For any 𝑥1 ∈ [0, 𝑢′−1(𝛿𝛽−1𝑘)], some consumers keep empty storage: 𝑠 = 0. When 𝑥1
restricted to this interval, 𝑐2(𝑠) = 𝑥2(𝑠) and the profit is

𝜋1(𝑥1) = 𝑢 (𝑥1) − 𝑘𝑥1.

It has a local maximum at 𝑥1 = 𝑐∗. For 𝑥1 ∈ [𝑢′−1(𝛿𝛽−1𝑘), (1+𝛽)𝑐∗], the profit is increasing
in 𝑥1 and for all 𝑥1 > (1 + 𝛽)𝑐∗, the profit is decreasing in 𝑥1.

To summarize, it is optimal for the first seller to sell either 𝑥1 = 𝑐∗ or 𝑥1 = (1 + 𝛽)𝑐∗,
depending on how efficient the consumer is at storing the good. If 𝛽 is large enough,

namely if,

𝛿−1𝛽𝑘 ≥ 𝑢 (𝑐∗)
𝑐∗

,

the optimal menu in period 1 features 𝑥1 = 𝑐∗ as a single item. From equation (17), price of

this item is 𝑝1(𝑐∗) = 𝑢 (𝑐∗).
When 𝛽 is sufficiently small, the first seller uses a strategy that is not feasible for the

models with infinite time horizon. In particular, the seller sells enough good to supply

consumer for both periods and effectively exclude the second seller from the market. This

is achieved by lowering consumers marginal utility in the second period beyond marginal

cost of production. Clearly, when the time horizon is infinite, this strategy is not feasible

as it would require the seller to sell infinite amount of good in the first period.

Just like in the benchmark setting, we focus on the case of large 𝛽 . The first period seller

sells 𝑥1 = 𝑐∗ and the consumers’ inventories range from 𝑠 = 0 to 𝑠 that is strictly between

zero and 𝑐1.
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0 𝑥

𝑝2(𝑥)

𝑐1 𝑐∗

𝑢 (𝑐∗) − 𝑢 (𝑐1) + 𝛿−1𝛽𝑘𝑐1

𝛿−1𝛽𝑘

𝑢 (𝑐∗) − 𝑢 (𝑠) + 𝛿−1 [𝑢 (𝑐∗) − 𝑢 (𝑐∗ − 𝛽𝑠)]

Fig. 5. Comparison of the benchmark menu and the public past prices menu.
Note: black lines represent items available on the benchmark menu (dashed) and the public past prices menu
(solid); red line represents the indifference condition that relates prices in different parts of the menu to each
other.

Proposition 10. Suppose 𝛿−1𝛽𝑘 ≥ 𝑢 (𝑐∗)/𝑐∗. Compared to the benchmark, when past
prices are public, there is an equilibrium in which:

(i) the first period seller limits the menu to a singleton item 𝑥1 = 𝑐∗ at the price 𝑝1 = 𝑢 (𝑐∗),
and

(ii) the second period seller sets uniformly higher prices

𝑝2(𝑥) = 𝑢 (𝑠 (𝑥) + 𝑥) − 𝑢 (𝑠) + 𝛿−1 [𝑢 (𝑐∗ − 𝛽𝑠 (𝑥)) − 𝑢 (𝑐∗ − 𝛽𝑠)],

where 𝑠 (𝑥) solves 𝛽𝑢′(𝑐∗ − 𝛽𝑠 (𝑥)) = 𝛿𝑢′(𝑥 + 𝑠 (𝑥)).

Proof. Given the induced consumption 𝑐2(𝑧), we can calculate the prices using equa-

tion (9):

𝑝2(𝑥2(𝑠)) =𝑢 (𝑐2(𝑠)) − 𝑢 (𝑠) +
𝑠∫

𝑠

𝑢′(𝑐2(𝑧))𝑑𝑧 =

𝑢 (𝑐2(𝑠)) − 𝑢 (𝑠) +
𝑠∫

𝑠

𝛿−1𝛽𝑢′(𝑐∗ − 𝛽𝑧)𝑑𝑧 =

𝑢 (𝑐2(𝑠)) − 𝑢 (𝑠) + 𝛿−1 [𝑢 (𝑐∗ − 𝛽𝑠) − 𝑢 (𝑐∗ − 𝛽𝑠)] .

Note that this menu is consistent with consumers choosing different inventories in the

first period as the second period seller extracts any extra surplus above 𝑢 (𝑥1 − 𝛽𝑠) + 𝛿𝑢 (𝑠)
regardless of the choice of inventory 𝑠 .
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Also, note that 𝑐2(𝑠) is discontinuous at 𝑠 = 0, therefore there is a gap in the menu.

To consumers without inventory, the seller offers either 𝑐∗ or lim

𝑠→0
+
𝑐2(𝑠) = 𝑐1. Items 𝑥2 ∈

(𝑢′−1(𝛿−1𝛽𝑘), 𝑐∗) are not offered.
For any 𝑠 > 0, 𝑝′

2
(𝑥2(𝑠)) = 𝛿−1𝛽𝑢′(𝑐∗ − 𝛽𝑠) ≥ 𝛿−1𝛽𝑘 , which means that the prices are

uniformly larger than in the case of hidden past menus. □

The comparison between the prices in the benchmark case and the case of public past

prices is depicted on Figure 5. It is immediately clear from Proposition 10 that access to

past prices reduces consumer surplus. In equilibrium, because the menu in the first period

is more restrictive, fewer consumers stockpile which leads to higher future prices.

The equilibrium described in Proposition 10 is not unique. There are other equilibria

in which the first seller offers so sell units of the good at the marginal cost in addition

to the item (𝑐∗, 𝑢 (𝑐∗)). These additional units do not affect the first seller’s profit, but are

beneficial to the consumer. Menus offered in the benchmark case are part of an equilibrium

when past prices are observed.

6.3 Long-lived seller
In this section we consider the case of long-lived seller. Because of the perfect recall, the

information structure in the model with the long-lived seller is the same as in the previous

section. Most of the analysis carries over. The one feature that sets this case apart from the

previous one is that the long-lived seller takes into account the effect of the first period

menu on the second period profits. By selling too much good in the first period, he risks

reducing the demand and profits in the second period. Thus, the seller offers a singleton

menu in the first period (i.e., it is strictly suboptimal to offer additional units of the good

at the per-unit price equal to the marginal cost), and, intuitively, we should expect the size

of the item to be smaller than 𝑐∗.
The profit maximization problem is

max

𝑥1
{𝜋1(𝑥1) + 𝛿𝜋2(𝑥1)}

where 𝜋1(𝑥1) is characterized by (17) and

𝜋2(𝑥1) =
𝑠∫

𝑠

𝑢 (𝑐2(𝑠)) − 𝑘𝑥2(𝑠) − 𝑢 (𝑠) +
𝑠∫

𝑠

𝑢′(𝑐2(𝑧))𝑑𝑧
 𝑑𝐹 (𝑠) =

−𝑢 (𝑠) +
[
𝑢 (𝑐∗) − 𝑘𝑐∗ +

∫ 𝑠

0

𝑢′(𝑐2(𝑧))𝑑𝑧
]
𝐹 (0)+

𝑠∫
𝑠

[(𝑢 (𝑐2(𝑠)) − 𝑘𝑥2(𝑠))𝐹 ′(𝑠) + 𝐹 (𝑠)𝑢′(𝑐2(𝑠))] 𝑑𝑠.

where 𝑐2(𝑠), 𝑥2(𝑠), 𝑠, 𝑠 and 𝐹 (𝑠) all depend on 𝑥1 in the way described in the previous

section. Let 𝑥𝑚
1
be a solution to the profit maximization problem.
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Proposition 11. Suppose 𝛿−1𝛽𝑘 ≥ 𝑢 (𝑐∗)/𝑐∗. The bundle sold by the long-lived monopolist
in the first period is smaller than the analogous bundle sold by the short-lived monopolist:
𝑥𝑚
1

< 𝑐∗

Proof. For this result to hold, it suffices to show that 𝜋2(𝑥1) is decreasing. We prove

this result in three steps. First, we show that the distribution of inventories is decreasing

in 𝑥1 in the first order stochastic dominance sense. Second, we show that in the optimal

menu, the profit generated by a single consumer in the second period is decreasing in

the consumer’s inventory. Finally, we consider two scenarios when the seller sells 𝑥1 or

𝑥1 < 𝑥1 in the first period. We argue that the second period menu that is optimal following

the sale of 𝑥1 generates higher profit when 𝑥1 is sold (this immediately follows from the

first two steps of the proof). Therefore, the second period menu that is optimal following

the sale of 𝑥1 generates higher profit than the one that is optimal following the sale of 𝑥1.

To see that the distribution of inventories is decreasing in 𝑥1 in the first order stochastic

dominance sense, note that 𝑠 is increasing in 𝑥1 and, for a given 𝑠 , 𝑐2(𝑠) is increasing in

𝑥1. Also, because −𝑢′′(𝑐)/(𝑢′(𝑐) − 𝑘) is increasing in 𝑐 (recall that 𝑢′′′(𝑐) ≤ 0), 𝐹 ′(𝑠) is
decreasing in 𝑥1 for any 𝑠 .

To see that the profit generated by a single consumer in the second period is decreasing

in the consumer’s inventory, recall that

𝑝2(𝑥2(𝑠)) − 𝑘𝑥2(𝑠) = 𝑢 (𝑐2(𝑠)) − 𝑢 (𝑠) + 𝛿−1 [𝑢 (𝑥1 − 𝛽𝑠) − 𝑢 (𝑥1 − 𝛽𝑠)] − 𝑘 (𝑐2(𝑠) − 𝑠),
therefore

𝑑

𝑑𝑠
[𝑝2(𝑥2(𝑠)) − 𝑘𝑥2(𝑠)] = (𝑢′(𝑐2(𝑠)) − 𝑘)𝑑𝑐2(𝑠)

𝑑𝑠
− (𝛿−1𝛽𝑢′(𝑥1 − 𝛽𝑠) − 𝑘) ≤ 0.

□

This proposition illustrates a simple point we made in the beginning of this section.

The long-lived monopolist faces the same problem as the sequence of the short-lived

monopolists with one major difference: he is wary of cannibalizing the future market by

overselling in the present and allowing the consumers to stockpile larger amounts of the

good. To counter this, the long-lived monopolist creates deficit by selling relatively small

bundles early on.

7 CONCLUDING REMARKS
This work is the first attempt to combine elements of competition and monopoly power in

the market for nonlinearly priced storable goods. The seller in any period has monopoly

power, but this is transitory, since he effectively competes with past and future sellers given

the consumer’s ability to store the good. Even though consumers are ex ante identical,

they hold a distribution of inventories, giving rise to a nonlinear pricing problem in

a dynamic context. Our model sheds light on important forces that shape equilibrium

pricing, such as unavoidable emergence of consumer heterogeneity and inability of sellers

to fully extract consumer surplus in bulk. Our model is complex enough that we have made

several simplifying assumptions, such as linear storage costs costs and identical consumers.

However, the model can be easily extended to the case of nonlinear cost of storage and

consumer heterogeneity in cost or availability of storage. Our model and results may help
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in studying more complex phenomena such as equilibrium pricing by a long-lived seller,

non-stationary price dynamics with intermittent sales, interaction between consumer taste

and consumer inventories and selling goods through subscriptions.
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